Dillon, K. B. \& Waddington, T. C. (1972). J. Inorg. Nucl. Chem. 34, 1825-1827.
Fieldhouse, J. W. \& Graves, D. F. (1981). Am. Chem. Soc. Symp. Ser. No. 171. Proceedings of the International Conference on Phosphorus Chemistry, Durham, NC, pp. 315-320.
Finch, A., Gardner, P. J. \& Sen Gupta, K. K. (1966). J. Chem. Soc. A, pp. 1367-1370.
Frazer, M. J., Gerrard, W. \& Patel, J. K. (1960). J. Chem. Soc. pp. 726-730.
Geller, S. \& Hoard, J. L. (1951). Acta Cryst. 4, 399-405.
Gerrard, W., Mooney, F. F. \& Willis, H. A. (1961). J. Chem. Soc. pp. 4255-4256.
Hoard, J. L., Geller, S. \& Cashin, W. M. (1951). Acta Cryst. 4, 396-398.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
McGandy, E. L. \& Eriks, K. (1961). Am. Crystallogr. Assoc. Summer Meet. Abstr. A3.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1978). MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Svetich, C. W. \& Caughlin, C. N. (1965). Acta Crust. 19, 645-650.
Waddington, T. C. \& Klanberg, F. (1960). J. Chem. Soc. pp. 2339-2343.
Waddington, T. C. \& Peach, M. E. (1962). J. Chem. Soc. pp. 3450-3453.

Acta Cryst. (1982). B38, 2286-2288

Structure of 2,2',6,6' ${ }^{\prime}$-Tetranitro-4,4 ${ }^{\prime}$-isopropylidenediphenol

By J. L. Wang, C. P. Tang and Y. J. Chen
Chung Shan Institute of Science and Technology, PO Box 1-4, Lung Tan, Taiwan 352

(Received 24 August 1981; accepted 16 March 1982)

Abstract

C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{10}, M_{r}=408.28\), monoclinic, $C 2 / c, a=17.202$ (1), $b=9.477$ (1), $c=11.263$ (1) \AA, $\beta=107.0(1)^{\circ}, Z=4, D_{c}=1.544, D_{m}=1.535 \mathrm{~g}$ cm^{-3}. The structure was solved by direct methods and refined by full-matrix anisotropic least squares to a final R of 0.068 for 1590 reflections. The molecule has C_{2} symmetry. The dihedral angle between the two phenylring planes is $63.9(5)^{\circ}$. The -OH group forms an ordered intramolecular hydrogen bond with one of the two neighboring nitro groups. The other nitro group is rotated through $46.5(3)^{\circ}$ from coplanarity with the phenyl ring.

Introduction. In the title compound each hydroxy group lies between two nitro groups.

The present structure analysis was undertaken to study the intramolecular hydrogen bonds in this symmetrical molecule.

The compound was synthesized according to du Pont de Nemours \& Co. (1937). Yellow crystals were crystallized from benzene solution. Intensity data were collected at room temperature using a $\theta-2 \theta$ scan
technique on a CAD-4F four-circle automatic diffractometer with graphite-monochromatized $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.5418 \AA$). No time-decay correction was made, since three monitoring reflections were measured periodically which showed only slight random fluctuations. 1622 independent reflections $(2 \theta \leq$ 140°) were corrected for Lorentz and polarization effects, but not for absorption ($\mu=11.69 \mathrm{~cm}^{-1}$). 1590 reflections had $\left|F_{o}\right|>2 \sigma\left|F_{o}\right|$.

The structure was solved by MULTAN (Germain, Main \& Woolfson, 1971). The E map revealed the molecular structure and confirmed the space group $C 2 / c$. The non-hydrogen-atom coordinates with isotropic thermal parameters were refined by full-matrix least-squares techniques. The phenyl $\cdot \mathrm{H}$ atoms were then inserted into chemically reasonable positions and the methyl and hydroxyl H atoms were located on difference maps. The final cycle of the refinement with anisotropic thermal parameters for all non-hydrogen atoms, except for the central $\mathrm{C}(7)$, yielded R and R_{w} values of 0.068 and 0.03 , respectively, where $R=$ $\sum\left|F_{o}\right|-\left|F_{c}\right|\left|\sum\right| F_{o} \mid$ and $R_{w}=\left[\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}$.* The weighting scheme of Stout \&

[^0]Table 1. Fractional atomic coordinates and thermal parameters $\left(\times 10^{4}, \times 10^{3}\right.$ for H$)$, with their estimated standard deviations

The equivalent thermal parameters $\left(\AA^{2}\right)$ are of the form $U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{l}$. \mathbf{a}_{j}. All hydrogen atoms were kept fixed during the refinement and assigned the same isotropic temperature factors as their attached heavy atoms.

	x	y	z	$U_{\text {eq }} / U_{\text {iso }}$		x	y	z	$U_{\text {eq }} / U_{\text {iso }}$
C(1)	9239 (1)	2411 (2)	2030 (2)	372 (11)	C(2)	9260 (1)	1202 (2)	1362 (2)	457 (12)
C(3)	8574 (1)	376 (3)	894 (2)	484 (12)	C(4)	7821 (1)	708 (3)	1050 (2)	447 (12)
C(5)	7816 (1)	1950 (2)	1721 (2)	429 (11)	C(6)	8494 (1)	2778 (2)	2195, (2)	399 (11)
C(7)	10000	3335 (3)	2500	351 (7)	C(8)	9962 (1)	4263 (3)	3600 (3)	533 (14)
N(1)	8671 (1)	-912 (2)	239 (2)	685 (13)	N(2)	7063 (1)	2396 (3)	1975 (2)	543 (12)
O(1)	7131 (1)	-23 (2)	604 (2)	595 (11)	$\mathrm{O}(2)$	9332 (2)	-1215 (3)	158 (3)	1209 (19)
$\mathrm{O}(3)$	8070 (1)	-1644 (2)	-219 (2)	858 (14)	$\mathrm{O}(4)$	6881 (1)	3641 (2)	1831 (2)	763 (13)
O(5)	6678 (1)	1520 (3)	2355 (3)	1046 (17)	H (C2)	975	92	123	32
H(C6)	851	349	268	30	H(C81)	988	369	429	39
H(C82)	961	480	341	39	H(C83)	1041	471	391	39
H(O1)	720	-70	10	42					

Fig. 1. A perspective view of a molecule of the title compound.

Fig. 2. Bond lengths $(\mathbb{\AA})$ and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses.

Jensen (1968) was used. All parameters for H atoms were included in the calculation but not refined. The scattering factors used were all taken from International Tables for X-ray Crystallography (1962).

The final atomic coordinates are listed in Table 1. A perspective view of the molecule is given in Fig. 1. Selected bond lengths and angles are given in Fig. 2.

Fig. 3. The molecular packing arrangement viewed along \mathbf{b}. The short contacts $(<3.0 \AA \hat{A})$ are indicated by broken lines, and the atoms involved are labelled.

Table 2. Short intermolecular contacts $(\AA)(\mathrm{H} \cdots \mathrm{H}$ contacts are excluded)

Second atom at$\frac{3}{2}-x, \frac{1}{2}-y,-z$	
$\mathrm{C}(3) \cdots \mathrm{O}(4)$	2.08 (1)
$\mathrm{C}(3) \cdots \mathrm{N}(2)$	3.75 (1)
$\mathrm{C}(4) \cdots \mathrm{C}(5)$	$3 \cdot 72$ (1)
$\mathrm{N}(1) \cdots \mathrm{O}(4)$	$3 \cdot 11$ (1)
$\mathrm{C}(2) \cdots \mathrm{O}(4)$	3.49 (1)
$\mathrm{C}(4) \cdots \mathrm{C}(6)$	3.96 (1)
$\mathrm{C}(5) \cdots \mathrm{C}(5)$	$3 \cdot 85$ (1)
Second atom at$\frac{3}{2}-x,-\frac{1}{2}+y, \frac{1}{2}-z$	
$\mathrm{C}(4) \cdots \mathrm{O}(4)$	3.01 (1)
$\mathrm{O}(1) \cdots \mathrm{H}(\mathrm{C} 6)$	2.86 (2)
$\mathrm{O}(5) \cdots \mathrm{H}(\mathrm{C} 6)$	2.89 (2)
$\mathrm{O}(5) \cdots \mathrm{H}(\mathrm{C} 82)$	2.68 (2)
$\mathrm{C}(3) \cdots \mathrm{O}(4)$	3.33 (1)
$\mathrm{C}(5) \cdots \mathrm{O}(4)$	3.50 (1)
$\mathrm{O}(1) \cdots \mathrm{O}(4)$	$3 \cdot 16$ (1)

Second atom at

$$
x,-y,-\frac{1}{2}+z
$$

$\mathrm{O}(3) \cdots \mathrm{O}(5) \quad 3.06$ (1)
$\mathrm{O}(2) \cdots \mathrm{H}(\mathrm{C} 81) \quad 2.81(1)$

Second atom at		
$x,-y, \frac{1}{2}+z$		
$\mathrm{C}(5) \cdots \mathrm{O}(3)$		
$\mathrm{C}(6) \cdots \mathrm{O}(2)$		
$\mathrm{C}(6) \cdots \mathrm{O}(3)$		
$\mathrm{C}(6) \cdots \mathrm{N}(1)$		
$\mathrm{N}(2) \cdots \mathrm{O}(3)$		
Second atom at		$3 \cdot 55(1)$
$2-x,-y,-z(1)$		
$2-21(1)$		
$\mathrm{C}(2) \cdots \mathrm{O}(2)$		
$\mathrm{O}(2) \cdots \mathrm{H}(\mathrm{C} 2)$		

> Second atom at
$2-x, 1-y, 1-z$
$\mathrm{C}(8) \cdots \mathrm{C}(8) \quad 3.42(1)$

Second atom at	
$\frac{3}{2}-x,-\frac{1}{2}-y,-z$	
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	$3 \cdot 19(1)$
$\mathrm{O}(3) \cdots \mathrm{O}(3)$	$2 \cdot 70(1)$
$\mathrm{O}(3) \cdots \mathrm{H}(\mathrm{O} 1)$	$2.57(2)$

$$
\begin{gathered}
\text { Second atom at } \\
\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z \\
\mathrm{C}(8) \cdots \mathrm{O}(5) \quad 3.45(1)
\end{gathered}
$$

and $\mathrm{O}(5)$ away from close contact with the -OH group, resulting in an ordered intramolecular hydrogen bond between the -OH group and $\mathrm{O}(3)$ of the nitro group of $\mathrm{N}(1)$. The $\mathrm{O}(1) \cdots \mathrm{O}(3)$ and $\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(3)$ distances are 2.59 (1) and 1.87 (1) \AA, respectively,
and the $\mathrm{O}(1)-\mathrm{H}(\mathrm{O} 1) \cdots \mathrm{O}(3)$ angle is $137.2(1)^{\circ}$. A similar feature has been observed in the structure of the picric acid-2-amino-1-bromonaphthalene complex (Carstensen-Oeser, Götlicher \& Habermehl, 1968). Picric acid also has one hydroxy group between two nitro groups. The dihedral angles of the two nitro groups adjacent to the hydroxy group are $16 \cdot 5$ (4) and $3.4(4)^{\circ}$ with respect to the phenyl-ring plane. The greater rotation of the $N(2)$ nitro group in the present molecule is probably due to different intermolecular interactions in the two compounds.

The crystal packing, shown in Fig. 3, is through short $\mathrm{C} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O} \cdots \mathrm{O}$ and hydrophobic contacts. The $\mathrm{C}(3) \cdots \mathrm{O}(4)\left(\frac{3}{2}-x, \frac{1}{2}-y,-z\right)$ distance is only 2.08 (1) \AA. The intermolecular contacts are listed in Table 2.

The authors thank Mr D. J. Hung for supplying the crystals, and Professor T. H. Hseu for helpful discussions.

References

Carstensen-Oeser, E., Göttlicher, S. \& Habermehl, G. (1968). Chem. Ber. 101, 1648-1655.
du Pont de Nemours \& Co. (1937). US patent 2118501.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 201-203. Birmingham: Kynoch Press.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination, p. 385. New York: Macmillan.

trans-9-Ethyl-2,4-dimethylthioxanthene 10-Oxide

By Shirley S. C. Chu and Vera Napoleone
School of Engineering and Applied Science, Southern Methodist University, Dallas, Texas 75275, USA

(Received 12 January 1982; accepted 16 March 1982)

Abstract

C}_{17} \mathrm{H}_{18} \mathrm{OS}\), triclinic, $P \overline{1}, Z=2, M_{r}=270 \cdot 40$, $a=8.019$ (1), $b=8.615$ (2), $c=11.144$ (3) $\AA, a=$ 104.09 (2), $\beta=77.30(2), \gamma=103.75(2)^{\circ}, V=$ 714.5 (3) $\AA^{3}, D_{x}=1.257 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K())=$ $1.5418 \AA, \mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.844 \mathrm{~mm}^{-1}$; final $R=0.049$ for 2121 observed reflections. The 9 -ethyl group is in the 'boat-axial' and the 10 -oxide group in the 'boatequatorial' conformation with respect to the central ring of the thioxanthene ring system.

Introduction. 9-Ethyl-2,4-dimethylthioxanthene 10 oxide can exist in the form of cis and trans isomers.

0567-7408/82/082288-03\$01.00

The crystal structure of the cis isomer has been determined (Chu, Napoleone, Massah \& Ternay, 1981), and the preparation and NMR data of the title compound have been reported. In the cis isomer, the 9 -ethyl and 10 -oxide groups are both in the 'boat-axial' conformation. The crystal structure of the trans isomer is reported in this paper, and its conformation is compared with that of the cis isomer.

Single crystals of the title compound (I) were obtained through the courtesy of Dr Andrew L. Ternay Jr of the Chemistry Department of the University of Texas at Arlington. The crystals are transparent © 1982 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and unrefined H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36800 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1982 International Union of Crystallography

